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Compute shaders

The future of GPU computing or a late rip-off of
Direct Compute?
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Compute shaders
Previously a Microsoft concept, Direct Compute

Now also in OpenGL, new kind of shader since the
recent OpenGL 4.3

Kind of "Bleeding edge”; even today since 4.3 is not
fully universal

64(91)




jj Information Coding / Computer Graphics, ISY, LiTH
=

Why is this important?
Why use that instead of CUDA or OpenCL?

+ Better integration with OpenGL
+ No extra installation!
+ Easier to configure than OpenCL
+ Not NVidia specific like CUDA

+ If you know GLSL, Compute Shaders are (fairly) easy!
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Not only plus...
- Modest hardware demands: Kepler + 4.3
- Some new concepts
- Not part of the main graphics pipeline like fragment shaders

- Some vendors (Apple) lagging behind

Compute shaders run alone, not compiled together with others.
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CORE SPECIFICATION
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Vertex Shading
Tessellation
Rasterization
Fragment Shading
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So how do | use it?
Compiled like other shaders!

Trivial change from the usual shader loader/compilers
from graphics programs, just compile as
GL_COMPUTE_SHADER.

Easy:

 Uniforms work as usual

 Textures work as usual
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A bit different

No longer not one thread per fragment (output pixel)

Thereby: No thread specific output

Shader Storage Buffer Objects (SSBO):
General buffer type for arbitrary data
Can be declared as an array of structures

Read and written freely by Compute Shaders!
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How do | upload input data?
Upload to SSBO:
glGenBuffers(1, &ssbo);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo);
glBufferData(GL_SHADER_STORAGE_BUFFER, size, ptr,
GL_STATIC_DRAW);
How does the shader know?

glBindBufferBase(GL_SHADER_STORAGE_BUFFER, id,
ssbo);

layout(std430, binding = id, buffer x {type y[];};
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Access data in the shader
Set number of threads per block:
layout(local_size_x = width, local_size_y = height)
Thread number:

gl_Globallnvocation
gl_locallnvocation

void main()

{

buffer[gl_Globallnvocation.x] =
- buffer[gl_Globallnvocation.x];

;
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Execute kernel
glUseProgram(program);
giDispatchCompute(sizex, sizey, sizez);

The arguments to glDispatchProgram set the number of

blocks / workgroups. The number of threads (work items)
per block are set by the shader.
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Getting output data
glBindBuffer(GL_SHADER_STORAGE, ssbo);
ptr = (int *) giMapBuffer(GL_SHADER_STORAGE,
GL_READ_ONLY);

Then read from ptr]i]

glUnmapBuffer(GL_SHADER_STORAGE);
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Complete main program:

int main(int argc, char **argv)
{
glutInit (&argc, argv);
glutCreateWindow("TEST1");

// Load and compile the compute shader
GLuint p =loadShader("cs.csh");

GLuint ssbo; //Shader Storage Buffer Object

// Some data

int buf[16] = {1, 2, -3, 4, 5, -6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16};

int *ptr;

// Create buffer, upload data
glGenBuffers(l, &ssbo);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo);
glBufferData(GL_SHADER_STORAGE_BUFFER,
16 * sizeof(int), &buf, GL_STATIC_DRAW);

// Tell i1t where the input goes!
// "5" matches "layuot" in the shader.

glBindBufferBase(GL_SHADER_STORAGE_BUFFER,
5, ssbo);

// Get rolling!
glDispatchCompute(l6, 1, 1);

// Get data back!
glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo);
ptr = (int *)glMapBuffer(

GL_SHADER_STORAGE_BUFFER,
GL_READ_ONLY);
for (int 1=0; 1 < 16; 1++)
{
printf("%d\n", ptr[i]);
}
}
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Simple Compute Shader:

#version 430
#define width 16
#define height 16

Note: Too many threads
for data (16*16*16)

// Compute shader invocations in each work group
layout(std430, binding = 5) buffer bbs {int bs[];};
layout(local_size_x=width, local_size_y=height) 1in;

//Kernel Program

void main()

{
int 1 = int(gl_LocallnvocationID.x * 2);
bs[gl_LocallInvocationID.x] = -bs[gl_LocalInvocationID.x];

¥
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OpenGL Compute Shaders supported for
NVidia and AMD since the start. Later also
supported in
GLES 3.1 (embedded systems!)
MESA for Intel GPUs (Haswell)

but still not on Macs...
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Are Compute Shaders an alternative?
- Portable between GPUs and OSes
- Steep hardware demands less and less a problem

- All advantages?
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Let's not forget Direct Compute
- Its own shader language (HLSL)
* Microsoft only
- Similar to OpenCL in setup. A bit messy?

- Close to graphics code
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Portable Features Install Code

CUDA Weak Great Weak Great
OpenCL Great Good Weak OK
GLSSLhI;aaeg:sment Great Weak Great Messy
GLSL Compute | G eat Good Great OK
shaders

DC Compute Weak Good Great OK
shaders
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But how about the performance???
Some comparisons

One old project: CUDA vs GLSL vs OpenCL,
compared with a mass-spring system

One recent project: Multiple platforms,
compared with similar FFT implementation
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Mass-spring system
by Marco Fratarcangeli
Part of my GPU computing PhD course a few years ago.
Published in "Game Engine Gems 2"

Result: CUDA and GLSL almost the same, OpenCL noticably
behind.
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"FFT everywhere" project
by Torbjorn Sorman
Recent diploma thesis project.

Some interesting results.
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CUDA, DirectX, OpenGL, OpenCL, cuFFT ...
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results, 1D FFT, AMD

Torbjorn S6rman's preliminary
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Torbjorn Sorman's results

- cCuFFT so much faster that it is scary...
- Torbjorn's own GPU implementations much faster than CPU
versions
- On NVidia, CUDA and Direct Compute significantly faster than
OpenGL Compute Shaders and OpenCL
- On AMD, Direct Compute, OpenCL and OpenGL Compute Shaders
ran side-by-side

Lots of if's and but's... but two clear conclusions:

- Hard optimization (cuFFT and FFTW) pays, and not just by a little!
- OpenCL and Compute Shaders very close - basically the same?
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Vulkan

The new OpenGL - also the new open parallel computing
platform?

Will it step in and take over?

- Cross-platform
- Built for both graphics and general-purpose computations
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It would be
more logical
to spell it
"Dulcan”
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So how do | do GPU computing with
Vulkan?

Simple: Uses GLSL Compute Shaders!

All | said about Compute Shaders are true for
Vulkan, except that the host looks different!
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GPU computing conclusions
The desktop supercomputer
Fast changing area

Great performance for big problems that fit the
architecture

Good performance for many other problems
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