*]d”‘; Information Coding / Computer Graphics, ISY, LiTH
44

"I
4,
)h\t; .

Compute shaders

The future of GPU computing or a late rip-off of
Direct Compute?

63(91)

o COMNG .,
\ !
\L‘ .4’
< #
~ -
. »
>
. -
’f
1
4,
.« VP

Information Coding / Computer Graphics, ISY, LiTH

Compute shaders
Previously a Microsoft concept, Direct Compute

Now also in OpenGL, new kind of shader since the
recent OpenGL 4.3

Kind of "Bleeding edge”; even today since 4.3 is not
fully universal

64(91)

jj Information Coding / Computer Graphics, ISY, LiTH
=

Why is this important?
Why use that instead of CUDA or OpenCL?

+ Better integration with OpenGL
+ No extra installation!
+ Easier to configure than OpenCL
+ Not NVidia specific like CUDA

+ If you know GLSL, Compute Shaders are (fairly) easy!

65(91)

jj Information Coding / Computer Graphics, ISY, LiTH
24

Not only plus...
- Modest hardware demands: Kepler + 4.3
- Some new concepts
- Not part of the main graphics pipeline like fragment shaders

- Some vendors (Apple) lagging behind

Compute shaders run alone, not compiled together with others.

66(91)

- COMNg

Information Coding / Computer Graphics, ISY, LiTH

CORE SPECIFICATION

o
£
B
o
£
w
-~
1~
]
E
o
.
w

FRAMEBUFFER

@©

COMPUTE @

SHADERS

67(91)

£
&
a
:
-

Vertex Shading
Tessellation
Rasterization
Fragment Shading

O,

CoMmWWE<<:>

SHADERS

g Information Coding / Computer Graphics, ISY, LiTH
=

So how do | use it?
Compiled like other shaders!

Trivial change from the usual shader loader/compilers
from graphics programs, just compile as
GL_COMPUTE_SHADER.

Easy:

 Uniforms work as usual

 Textures work as usual

69(91)

Information Coding / Computer Graphics, ISY, LiTH

A bit different

No longer not one thread per fragment (output pixel)

Thereby: No thread specific output

Shader Storage Buffer Objects (SSBO):
General buffer type for arbitrary data
Can be declared as an array of structures

Read and written freely by Compute Shaders!

70(91)

1?} Information Coding / Computer Graphics, ISY, LiTH

How do | upload input data?
Upload to SSBO:
glGenBuffers(1, &ssbo);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo);
glBufferData(GL_SHADER_STORAGE_BUFFER, size, ptr,
GL_STATIC_DRAW);
How does the shader know?

glBindBufferBase(GL_SHADER_STORAGE_BUFFER, id,
ssbo);

layout(std430, binding = id, buffer x {type y[];};

71(91)

Information Coding / Computer Graphics, ISY, LiTH

Access data in the shader
Set number of threads per block:
layout(local_size_x = width, local_size_y = height)
Thread number:

gl_Globallnvocation
gl_locallnvocation

void main()

{

buffer[gl_Globallnvocation.x] =
- buffer[gl_Globallnvocation.x];

;

72(91)

. COMNG
s (3
- 4
s "
~ -~
. -
. .
-
!
» o W

Information Coding / Computer Graphics, ISY, LiTH

Execute kernel
glUseProgram(program);
giDispatchCompute(sizex, sizey, sizez);

The arguments to glDispatchProgram set the number of

blocks / workgroups. The number of threads (work items)
per block are set by the shader.

73(91)

g Information Coding / Computer Graphics, ISY, LiTH
=

Getting output data
glBindBuffer(GL_SHADER_STORAGE, ssbo);
ptr = (int *) giMapBuffer(GL_SHADER_STORAGE,
GL_READ_ONLY);

Then read from ptr]i]

glUnmapBuffer(GL_SHADER_STORAGE);

74(91)

Information Coding / Computer Graphics, ISY, LiTH

Complete main program:

int main(int argc, char **argv)
{
glutInit (&argc, argv);
glutCreateWindow("TEST1");

// Load and compile the compute shader
GLuint p =loadShader("cs.csh");

GLuint ssbo; //Shader Storage Buffer Object

// Some data

int buf[16] = {1, 2, -3, 4, 5, -6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16};

int *ptr;

// Create buffer, upload data
glGenBuffers(l, &ssbo);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo);
glBufferData(GL_SHADER_STORAGE_BUFFER,
16 * sizeof(int), &buf, GL_STATIC_DRAW);

// Tell i1t where the input goes!
// "5" matches "layuot" in the shader.

glBindBufferBase(GL_SHADER_STORAGE_BUFFER,
5, ssbo);

// Get rolling!
glDispatchCompute(l6, 1, 1);

// Get data back!
glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo);
ptr = (int *)glMapBuffer(

GL_SHADER_STORAGE_BUFFER,
GL_READ_ONLY);
for (int 1=0; 1 < 16; 1++)
{
printf("%d\n", ptr[i]);
}
}

75(91)

llllll

Information Coding / Computer Graphics, ISY, LiTH

Simple Compute Shader:

#version 430
#define width 16
#define height 16

Note: Too many threads
for data (16*16*16)

// Compute shader invocations in each work group
layout(std430, binding = 5) buffer bbs {int bs[];};
layout(local_size_x=width, local_size_y=height) 1in;

//Kernel Program

void main()

{
int 1 = int(gl_LocallnvocationID.x * 2);
bs[gl_LocallInvocationID.x] = -bs[gl_LocalInvocationID.x];

¥

76(91)

Information Coding / Computer Graphics, ISY, LiTH

OpenGL Compute Shaders supported for
NVidia and AMD since the start. Later also
supported in
GLES 3.1 (embedded systems!)
MESA for Intel GPUs (Haswell)

but still not on Macs...

77(91)

Jj Information Coding / Computer Graphics, ISY, LiTH
4

"l
4,
o W

Are Compute Shaders an alternative?
- Portable between GPUs and OSes
- Steep hardware demands less and less a problem

- All advantages?

78(91)

Information Coding / Computer Graphics, ISY, LiTH

Let's not forget Direct Compute
- Its own shader language (HLSL)
* Microsoft only
- Similar to OpenCL in setup. A bit messy?

- Close to graphics code

79(91)

1?} Information Coding / Computer Graphics, ISY, LiTH

“
.....

Portable Features Install Code

CUDA Weak Great Weak Great
OpenCL Great Good Weak OK
GLSSLhI;aaeg:sment Great Weak Great Messy
GLSL Compute | G eat Good Great OK
shaders

DC Compute Weak Good Great OK
shaders

80(91)

Information Coding / Computer Graphics, ISY, LiTH

But how about the performance???
Some comparisons

One old project: CUDA vs GLSL vs OpenCL,
compared with a mass-spring system

One recent project: Multiple platforms,
compared with similar FFT implementation

81(91)

d Information Coding / Computer Graphics, ISY, LiTH
=

Mass-spring system
by Marco Fratarcangeli
Part of my GPU computing PhD course a few years ago.
Published in "Game Engine Gems 2"

Result: CUDA and GLSL almost the same, OpenCL noticably
behind.

82(91)

...........

"g’*‘: Information Coding / Computer Graphics, ISY, LiTH

"FFT everywhere" project
by Torbjorn Sorman
Recent diploma thesis project.

Some interesting results.

83(91)

Information Coding / Computer Graphics, ISY, LiTH

CUDA, DirectCompute, OpenGL Compute

> Shader, OpenCL, cuFFT ...
b -
g 10000000 —— CUDA
g 1000000 - DirectCo...
o E ~ OpenGL
S-LI. 100000 Compute
”Q Shader
C - 10000 g ~——— OpenCL
g 7] — cuFFT
_3 § 1000 —— FETW
) 3 ~—— OpenMP
c & 100 P —C G+
52 10 -~ JT— "
e . ——
2 1

10 1000 100000 10000000

100 10000 1000000

84(91)

Information Coding / Computer Graphics, ISY, LiTH

CUDA, DirectX, OpenGL, OpenCL, cuFFT ...

100

10

-

g 10000000 CUDA
E = DirectX
= 1000000

o — OpenGL
= LL o

QL 100000 OpenCL
20 —— CUFFT
E 49 == OpenMP
=B é 1000 —— C/C++
7N o

: | -

| -

0

o)

S

[t

100 500 1000 5000

85(91)

Information Coding / Computer Graphics, ISY, LiTH

results, 1D FFT, AMD

Torbjorn S6rman's preliminary

10000000 —— cIFFT (métning
vid host)
1000000 — DirectX

—— OpenGL

—— OpenCL
100000
10000
1000
100
10

10 1000 100000 10000000
100 10000 1000000

86(91)

1?} Information Coding / Computer Graphics, ISY, LiTH

Torbjorn Sorman's results

- cCuFFT so much faster that it is scary...
- Torbjorn's own GPU implementations much faster than CPU
versions
- On NVidia, CUDA and Direct Compute significantly faster than
OpenGL Compute Shaders and OpenCL
- On AMD, Direct Compute, OpenCL and OpenGL Compute Shaders
ran side-by-side

Lots of if's and but's... but two clear conclusions:

- Hard optimization (cuFFT and FFTW) pays, and not just by a little!
- OpenCL and Compute Shaders very close - basically the same?

87(91)

Information Coding / Computer Graphics, ISY, LiTH

Vulkan

The new OpenGL - also the new open parallel computing
platform?

Will it step in and take over?

- Cross-platform
- Built for both graphics and general-purpose computations

88(91)

lllllllll

It would be
more logical
to spell it
"Dulcan”

89(91)

Information Coding / Computer Graphics, ISY, LiTH

So how do | do GPU computing with
Vulkan?

Simple: Uses GLSL Compute Shaders!

All | said about Compute Shaders are true for
Vulkan, except that the host looks different!

90(91)

Information Coding / Computer Graphics, ISY, LiTH

GPU computing conclusions
The desktop supercomputer
Fast changing area

Great performance for big problems that fit the
architecture

Good performance for many other problems

91(91)

